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The propagation of small-amplitude modes in an inviscid but sheared subsonic mean
flow inside a duct is considered. For isentropic flow in a circular duct with zero swirl
and constant mean flow density the pressure modes are described in terms of the
eigenvalue problem for the Pridmore-Brown equation with Myers’ locally reacting
impedance boundary conditions.

The key purpose of the paper is to extend the results of the numerical study of
the spectrum for the case of lined ducts with uniform mean flow in Rienstra (Wave
Motion, vol. 37, 2003b, p. 119), in order to examine the effects of the shear and wall
lining. In the present paper this far more difficult situation is dealt with analytically.
The high-frequency short-wavelength asymptotic solution of the problem based on the
WKB method is derived for the acoustic part of the spectrum. Owing to the stiffness
of the governing equations, an accurate numerical study of the spectral properties of
the problem for mean flows with strong shear proves to be a non-trivial task which
deserves separate consideration.

The second objective of the paper is to gain theoretical insight into the properties
of the hydrodynamic part of the spectrum. An analysis of hydrodynamic modes both
in the short-wavelength limit and for the case of the narrow duct is presented. For
simplicity, only the hard-wall flow configuration is considered.

1. Introduction
The most important source of aircraft noise, at least at take-off, is the turbofan aero-

engine. Sound produced by interaction of fan and stator, by interaction of fan with
mean flow turbulence, and by the fan alone when its blade tips rotate supersonically,
propagates through the inlet and bypass duct of the engine (Eversman 1991). Key
features of this noise that need to be addressed in a theoretical study and modelled
in any numerical simulation are the relatively high prevailing frequencies (Helmholtz
numbers ranging from ∼20 for the first harmonic to 70 for the third harmonic), a
high subsonic mean flow (Mach numbers during approach and take off ranging
between 0.3 and 0.7), a high circumferential wavenumber (relevant periodicities range
between, say, 4 to 30), a thin boundary layer in the inlet but sheared flow in the
bypass and exhaust duct, and a wall lined with acoustically damping material (usually
made of an array of Helmholtz resonator cells) that is mathematically described by
a local impedance.
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Various levels of sophistication in modelling the sound propagation have been
published. Analytical or semi-analytical solutions based on modal analysis (also
known as normal-mode analysis) are well known and widely applied to cylindrical
ducts (circular and annular) of constant cross-section and uniform mean flow, see
Zorumski (1974), Chapman (1994) and Rienstra (2003b). Ducts of varying cross-
section were usually treated numerically, although recently analytical solutions have
become available that use the aerodynamically inherent slow variation of the duct
diameter (Rienstra 1999, 2003a; Ovenden 2005; Mattheij, Rienstra & ten Thije
Boonkkamp 2005). Modal analysis has been studied for ducts of constant cross-
section and shear or swirling flow, for example in Golubev & Atassi (1998), Tam
& Auriault (1998), Kousen (1999), Nijboer (2001) and Cooper & Peake (2005), with
generalizations to slowly varying ducts in Cooper & Peake (2001).

In the present paper we aim to further our knowledge of modes in circular and
annular ducts with strictly subsonic sheared flow with particular emphasis on the role
of lined walls. The paper will be of analytic nature, supported by numerical results
of a companion paper (Vilenski & Rienstra 2006) on the numerical treatment of the
problem.

An important aspect of the small-amplitude perturbation techniques employed for
the description of the wave dynamics in such flows is the behaviour of the spectrum
of the related linearized equations of motion. Of special theoretical interest here is
the high-frequency limit, since it is important for aero-engine flows and also presents
considerable difficulty for direct numerical treatment, owing to the stiffness of the
governing equations.

The dispersion relation of the compressible linearized Euler equations is known
to have two branches. The first branch corresponds to acoustic waves. The second
branch, which is usually ignored when we are only interested in acoustic behaviour,
is associated with the waves that do not propagate along fluid particles, but remain
stationary with respect to the fluid. Traditionally, waves of this type are studied in the
context of hydrodynamic stability theory and are called convected or hydrodynamic
waves. For compressible two-dimensional flows the theory of these waves was given
in 1946 in the classical work by Lees & Lin (1946) who used a modal approach.

Lees & Lin (1946) considered temporal stability of a non-uniform unbounded
parallel flow, with the amplitudes of the perturbation waves being functions of
the cross-stream variable. They also studied the limit of vanishing viscosity and
obtained the compressible analogue of Rayleigh’s equation for the amplitude of the
pressure mode, also known as the two-dimensional Pridmore–Brown equation in the
aeroacoustic literature. They examined in detail the solution’s behaviour in the vicinity
of the critical layer, where the phase speed of the mode is equal to the local mean
flow velocity and obtained the generalization of the inflection point theorem. Further
discussion of their theory and other related results can be found in Criminale, Jackson
& Josine (2003) and Schlichting et al. (2000).

In the modal approach both types of waves have to be studied within the same
set of governing equations. They can be reduced to a single second-order ordinary
differential equation, say, for the pressure amplitude P . For a homentropic non-
swirling vortical flow in a circular duct this is the Pridmore–Brown equation (3.1),
and equation (2.24) for a general axisymmetric ducted flow with swirl and shear.
Together with appropriate boundary conditions, either of these equations leads to
an eigenvalue problem, where the spectral parameter (non-dimensional wavenumber
k̃ in the present case) appears in the coefficients before different derivatives of the
differential equation and, possibly, in the boundary conditions. This is the opposite of
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the Sturm–Liouville problem, where the spectral parameter enters the problem linearly
only via the coefficient before the zeroth derivative of the governing differential
equation. However, as in the Sturm–Liouville case, (see Naimark 1969 for details), in
the domain D of the complex plane k̃, where the coefficients of the equation (3.1) (or
(2.24), respectively) and the coefficients of the corresponding boundary conditions are
analytic functions, the related eigenvalue problem cannot have more than countable
number of eigenvalues, and these eigenvalues cannot have a finite limiting point in
this domain. The number of linearly independent eigensolutions corresponding to a
given eigenvalue is called the eigenvalue’s multiplicity. Since a second-order ordinary
differential equation cannot have more than two linearly independent solutions, the
multiplicity of the eigenvalues cannot be greater than two. In the domain D the
Green’s function of the related differential operator is meromorphic, with the eigen-
values being its poles of order not greater than two.

However, in the regions of the complex wavenumber plane k̃, where the phase
velocity of the mode is equal to the mean flow velocity, the coefficients of the modal
differential equation are not analytic. Such wavenumbers may potentially correspond
to convected modes. Although the spectral theory for singular Sturm–Liouville
operators is well known (Stakgold 1998), to the authors’ knowledge, its generalization
to the case of equations with non-analytic coefficients discussed in the previous
paragraph is not available. As a result, only limited data on the properties of the
spectrum of such equations currently exist in the literature and only for relatively
small values of the Helmholtz number. In particular, coverage of the properties of
the hydrodynamic part of the spectrum, in our view, remains insufficient.

The aim of this work is to revisit the problem of the propagation of small dis-
turbances in an annular duct with sheared mean flow and wall lining in order to shed
some extra light on these issues. We also aim to study the influence of the wall lining
on the spectrum structure, assuming the validity of the Ingard–Myers condition
as a limiting no-slip model for mean flow velocity profiles with strong near-wall
shear.

An important aspect of sound propagation in a non-dissipative medium is its
direction, also known as the problem of causality. It is not directly clear whether a
duct mode travels to the right or to the left. In time-harmonic problems this can
usually be resolved by giving the medium artificially slight dissipation in the form
of a small complex part of the frequency. If the mean flow is moving, however, the
disturbances may be unstable and a small complex part is not enough, making a deeper
causality analysis necessary. In the present problem we mainly consider a mean flow
that slips along the lined wall. This appears to be a much more difficult configuration
in terms of stability and causality than one might expect (Rienstra & Tester 2005;
Rienstra 2006; Brambley & Peake 2006). Therefore, we decided to leave any issue
of causality outside the present analysis.

The analysis is based on an asymptotic approach of the WKB type similar to what
has been proposed by Envia (1998) and Cooper & Peake (2001). The WKB solution is
extended to the case of soft walls and is used to predict analytically typical behaviour
of the axial wavenumber in the complex plane when the wall impedance varies in
the complex plane. The properties of the hydrodynamic part of the spectrum for the
sheared mean flow without swirl (i.e. the Pridmore–Brown equation, Pridmore–Brown
1958) are also studied analytically.

The paper is composed of four sections. In § 2 we deal with the general aspects of
modal analysis, our aim being to recall the main aspects of the generic problem with
the swirl and shear and provide a consistent derivation of the governing equation for
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the case of mean flow with shear only in the light of the basic principles. In view
of recent advances in the analysis of swirling flows (Golubev & Atassi 1998; Tam &
Auriault 1998; Nijboer 2001; Kousen 1999; Cooper & Peake 2005), it was important
to bring together essential information about the structure of the modal equation for
flows with swirl and shear, and for flows with shear only, which is studied in the
present paper. This applies particularly to the difference in the nature of the singularity
in the differential operators (2.24) and (2.28) which govern these two problems.

In the introduction to § 3 and § 3.1 the WKB approach is used to derive the
dispersion relation for the case of impedance walls in the absence of (radial) turning
points in the flow region. Sections 3.1.1 and 3.1.2 consider hard walls only and deal
mainly with the practical aspect of the WKB analysis. Here the comparison of the
accuracy of the WKB prediction with the known exact solution for the case of uniform
flow is made. The most important aspect of this is the exceptionally high quality of
the WKB approximation even for moderate wavenumbers and frequencies. In the
high-frequency range the WKB solution was found to rival numerical computations
(for details see Vilenski & Rienstra 2006). There has been a demand for such tool in
our recent work with the industry. Detailed examination of many numerical methods
now available for the purposes of modal analysis shows that it is always possible
that some eigenvalues can be missed and it is hard to make the numerical results
accurate, particularly with regard to high frequencies and the hydrodynamic part of
the spectrum.

The results of § § 3.1.1 and 3.1.2 are also needed for the analysis in § § 3.1.3 and
3.1.4, in which we describe the role of shear and lining in the cut-off part of
the spectrum and the surface modes. Although the cut-off part of the spectrum is
relatively unimportant for the propagation problem, knowledge of a large number of
cut-off modes is sometimes needed in applications. One such example is the problem
of extraction of the acoustic pressure field from a large-scale CFD computation near
the fan region for the purpose of further aeroacoustic computations (see Ovenden &
Rienstra 2004). In such a case the detailed a priori knowledge of the spectral proper-
ties of the problem is very useful. In fact we have written this work with the need
for an analytic approach to the complicated practical situations of this type in mind
(see Vilenski 2006). This also explains why much care is taken to ensure that the
proposed asymptotic results give sufficiently accurate representation of the available
exact solutions.

Section 3.2 is dedicated to the analysis of turning points (i.e. the change from
oscillatory to exponential behaviour in the radial direction) of the mode, both for ducts
with hard walls and with lining. Section 3.3 deals with the hydrodynamic part of the
spectrum. For simplicity, we have restricted consideration to the hard-wall boundary
conditions. The section examines the smoothness properties of hydrodynamic modes
and establishes their connection with the properties of the Green’s function. Section 4
contains the conclusions.

2. Problem formulation and governing equations
Consider an inviscid non-heat-conducting compressible perfect gas flow inside

an infinitely long straight annular duct of inner radius h and outer radius d (see
figure 1). Let x, r and θ be the axial, radial and circumferential coordinates, u, v and
w the projections of the velocity vector on the coordinate axes x, r and θ respectively,
ρ and p the density and the pressure. The dimensional equations for conservation of
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Figure 1. Flow geometry.

mass, and radial, circumferential and axial components of momentum and energy are
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Here t is time, γ = cp/cv is the ratio of specific heat capacities at constant pressure and
constant volume, respectively. The pressure, the density and the absolute temperature
T satisfy the equation of state p = RρT , R = cp − cv .

Assume that the total flow field is the sum of a mean flow and small-amplitude
unsteady perturbations

(u, v, w, ρ, p) = (ū, v̄, w̄, ρ̄, p̄) + (ũ, ṽ, w̃, ρ̃, p̃). (2.6)

The mean flow is independent of x, its radial velocity is zero, and its circumferential
velocity is also independent of θ , i.e.

∂

∂x
≡ 0, v̄ = 0,

∂w̄

∂θ
= 0.

In this case the mean flow is governed by the following well-known solution (see for
instance Tam & Auriault 1998):

ρ̄ = ρ̄(r), w̄ = w̄(r), ū = ū(r), p = pd −
∫ d

r

ρ̄(ξ )
w̄2(ξ )

ξ
dξ, (2.7)

where constant pd is the pressure at r = d , ρ̄(r), w̄(r) are arbitrary functions of r ,
and ū is an arbitrary function of its arguments.

All three vorticity components in the x-, θ- and r-direction are non-zero for the
mean flow (2.7) and are equal to
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respectively.
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The small-amplitude disturbance field is governed by the linearized Euler equations
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If the resulting small-amplitude disturbances are sought in the form

(ũ, ṽ, w̃, ρ̃, p̃) = (U, V, W, R, P ) exp(−iωt + ikx + imθ), (2.13)

where ω is the excitation frequency, and k and m are the axial and the circumferential
wavenumbers, respectively, then the amplitudes (U, V, W, R, P ) which are unknown
functions of r satisfy the system of equations
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while λ, given by

λ = −ω + kū + mw̄/r,

is the eigenvalue of the operator −i(∂t + ū∂x + w̄r−1∂θ ). Here and in what follows
the primes denote differentiation with respect to r . In order to reduce system (2.14–
2.18) to a single equation for P , we first eliminate U and W . This can be achieved by
eliminating W from (2.15) and (2.16), imr−1W + ikU from (2.14) and (2.18), expressing
the latter sum via (2.16) and (2.17) and substituting it into (2.14):
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Eliminating R from (2.20) and (2.21) via (2.19) yields the system for the pressure and
radial velocity amplitudes
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System (2.22)–(2.23) coincides with the related system of equations obtained by
Nijboer (2001). Elimination of V leads to a single differential equation for the
pressure amplitude P :

P ′′ +

(
λ + Br

λr
+C+

ρ̄A

λ

d

dr

(
λ

ρ̄A

))
P ′ +

(
AΩ

λ2
+

ρ̄A

λr

d

dr

(
Br

ρ̄A

)
+

BC

λ

)
P = 0. (2.24)

In order to state boundary conditions for this equation, assume that the duct walls
are treated with locally reacting lining with the complex specific impedances Zh and
Zd for r =h and r = d , respectively. Here r = d is the exterior radius of the duct and
r = h is the inner radius (see figure 1). According to Ingard (1959) and Myers (1980),
the following relations must be satisfied at the duct walls to correct for the vanishing
mean-flow boundary layer:
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where ṽn is the projection of the perturbation velocity on the outwardly directed
normal to the duct wall (ṽn = ṽ for r = d and ṽn = −ṽ for r = h), and Z = Zd or
Z = Zh for r = d or r = h, respectively. Substitution of (2.13) in (2.25) together with
(2.22) gives the required boundary conditions for the equation (2.24):
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The hard-wall boundary condition on either of the walls is recovered in the limit Zh

or Zd → ∞.
In the eigenvalue problem (2.24), (2.26), (2.27) the excitation frequency ω and

the circumferential wavenumber m are given real numbers while the axial complex
wavenumber k is an unknown spectral parameter.

Further discussion of the modal analysis for swirling flows can be found in
Golubev & Atassi (1998), Tam & Auriault (1998), Kousen (1999), Nijboer (2001)
and Cooper & Peake (2005), etc. However, the main interest here will be in the
situation of zero mean circumferential velocity w̄ = 0 and constant mean flow density
ρ̄ (and hence pressure p̄), in which case (2.24) reduces to the Pridmore-Brown equation

P ′′ + β(r)P ′ + γ (r)P = 0, (2.28)
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where
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In this case the boundary conditions are
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In the present work we study the solutions of field equation (2.28) with various
versions of conditions (2.29), (2.30). Any properties of the impedance as a function
of frequency will not be specified since we will not comment on the issue of causality.

3. Asymptotic analysis
The following non-dimensional quantities will be used in this section:

ω̃ = ωd/c0, k̃ = kd, zh = Zh/ρ̄c0, zd = Zd/ρ̄c0,

M = ū/c0, Mh = ū(h)/c0, Md = ū(d )/c0, s = h/d.

Also assume that the pressure amplitude P is scaled by (now constant) ρ̄c2
0, time by

d/c0, velocities by the sound speed c0, and r and other distances by d , so that the
problem (2.28)–(2.30) can be rewritten in the following non-dimensional form:
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In order to reduce the system (3.1)–(3.3) to a form convenient for WKB analysis,
introduce the new independent variable τ = τ (r) which will be specified in what
follows and the new dependent variable w(τ ) (not to be confused with the total
circumferential velocity w in § 2) such that
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τ will be suitably chosen later. The system (3.1)–(3.3) then takes the form
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dw
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It is assumed in this section that the duct is not circular (s > 0), the spectral parameter

k̃ is large and, unless specified otherwise, the frequency ω̃ and the circumferential

wavenumber m are of the same order of magnitude as k̃. It follows from (3.8)
that q(r) = O(k̃2) as k̃ → ∞. The exceptions are the vicinities of turning points say
r = r∗, where q(r∗) = 0 and the vicinities of the points where ω̃ − k̃M goes to zero
(Cooper & Peake 2001). According to the WKB methodology (see for instance
Barantsev & Engelgart 1987), away from these points the main-order part of the
operator on the left-hand side of (3.5) can be extracted by choosing τ ′(r) = q1/2. In
this case the first term in the curly brackets is equal to one whereas the remaining
terms are O(k̃−2) and can be neglected in the main-order analysis. The case of one
turning point can be dealt with by taking τ ′(r) = (q/τ )1/2. The first term in the curly

brackets in (3.5) is then equal to τ =O(k̃2/3), with the other two terms being O(k̃−2/3)
uniformly in r , if ω̃ − k̃M 	= 0. The case of ω̃ − k̃M = 0 will be studied separately.
Although physically possible, the situation of multiple turning points will not be
considered in the present study.

3.1. Ordinary WKB approximation

Assume that ω̃, m and k̃ are such that neither q(r) nor ω̃ − k̃M(r) tend to zero for
s � r � 1 and choose

τ (r) =

∫ r

s

√
q(ξ ) dξ, τd = τ (1) ≡

∫ 1

s

√
q(ξ ) dξ.

The aim of this section is to study the influence of the wall impedance on the
properties of the spectrum of the problem (3.1)–(3.3). For this reason, we assume here
that the impedance terms in (3.6), (3.7) are large compared to unity, i.e.

(ω̃ − k̃M)2

ω̃z

 1 (3.9)

for z = zh, zd . If the opposite is true, the resulting leading-order problem is governed
by the hard-wall solution derived in the following subsection. The physical meaning
of (3.9) is that the wall impedance z does not go to the hard-wall limit z = ∞ too

rapidly as k̃ increases. The problem (3.5)–(3.7) then becomes

d2w

dτ 2
+w = 0,

dw

dτ
+iσhw = 0 at τ = 0,

dw

dτ
− iσdw = 0 at τ = τd, (3.10)

where

σh =
(ω̃ − k̃Mh)

2

ω̃zhτ ′(s)
, σd =

(ω̃ − k̃Md)
2

ω̃zdτ ′(1)
. (3.11)

It has non-zero solution w = cos(τ ) − iσh sin(τ ) if the spectral parameter k̃ satisfies
the equation

ei2τd =
(1 + σh)(1 + σd)

(1 − σh)(1 − σd)
. (3.12)
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WKB Exact

k̃ k̃ Relative error %

16.67 + i · 11.69 16.67 + i · 12.11 3.60
16.67 + i · 26.62 16.67 + i · 26.73 0.41
16.67 + i · 38.04 16.67 + i · 38.10 0.16
16.67 + i · 48.49 16.67 + i · 48.53 0.082
16.67 + i · 58.48 16.67 + i · 58.51 0.051

Table 1. Ordinary WKB approximation versus exact solution: ω̃ = 25, m= 15,
s = 0.6, M = 0.5.

If the restriction (3.9) is violated either for r = s or r = 1, then σh = o(1) or σd = o(1),
respectively, and the related hard-wall boundary condition is recovered. Our next step
is to consider the hard-wall limit.

3.1.1. The hard-wall solution

For the duct with hard walls, σh = σd = 0, the dispersion relation (3.12) reduces to

the following equation for k̃: ∫ 1

s

√
q(ξ ) dξ = nπ, (3.13)

where n is an integer (cf. Keller 1985).
It is interesting to compare the accuracy of the WKB prediction of the axial

wavenumbers k̃ based on the dispersion relation (3.13) with the well-known exact
solution of system (3.1)–(3.3) for a uniform mean flow in a duct with hard walls. If
M ′ is identically zero and zh = zd = ∞, the system (3.1)–(3.3) reduces to the boundary
value problem for the Bessel equation

d2P

dr2
+

1

r

dP

dr
+

(
α2 − m2

r2

)
P = 0,

dP

dr
= 0 at r = s, 1,

and with the dispersion relation being

J ′
m(αs)Y ′

m(α) − Y ′
m(αs)J ′

m(α) = 0, α =

√
(ω − Mk̃)2 − k̃2,

where the primes stand for derivatives of the Bessel functions with respect to their
arguments.

The results of a comparison between the WKB approximation (3.13) of the

eigenvalues k̃ and their exact counterparts based on the above formula are summarized
in table 1, which shows the first five complex eigenvalues for ω̃ =25, m =15, s = 0.6,
M = 0.5. It can be seen from table 1 that the exact and the predicted values of the real

parts of the axial wavenumbers k̃ coincide. Apart from the first axial wavenumber

k̃ with the smallest absolute value, for which the relative error is 3.6%, the WKB

prediction for the imaginary part of k̃ is also very good, and the accuracy improves

as |k̃| grows. This remarkable feature of the WKB approximation can be used to
check the accuracy of numerical schemes for large ω̃, m, where the accuracy of the
WKB approximation becomes even better whereas the accuracy of numerical schemes
decreases owing to the stiffness of the problem.
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3.1.2. Narrow-duct approximation

In general, the roots of equations (3.12) or (3.13) must be found numerically. One
exception is the case of a narrow-duct approximation (∆ =1 − s → 0) with linear,
almost uniform mean flow M = M0 + M1(r − s) + O(∆2), and rotating phase planes
given by ωt = mϑ + kx, where ω̃ ∼ m ∼ k̃ 
 1. Then the duct width ∆ =1 − s � 1 and
we approximate

τ (r) =
√

q(s)(r − s) +
q ′(s)√
q(s)

(r − s)2

4
+ O(∆3), s � r � 1,

since it was assumed that q(r) 	= 0. Making use of the expansion q(r) = (ω̃ − k̃M)2 −
k̃2 − m2/r2 + O(1) as k̃ → ∞ and taking r = 1, yields for the dispersion relation

q(s) =

(
πn

∆

)2

− 1
2
q ′(s)∆ + · · · ,

with solution k̃ = k̃n, where

kn =
−0.5ω̃(Mh + Md) ±

√
D

1 − MhMd

, (3.14)

D = ω̃2 − (1 − MhMd)

{(
m

s

)2(
1 − ∆

s

)
+

(
πn

∆

)2}
+ O(∆2).

Here and in what follows n is the same integral number as appears on the right
of equation (3.13). This solution is perfectly analogous to the uniform mean flow
solution which is recovered when Mh is set equal to Md . The eigenvalues (3.14)
are distributed symmetrically with respect to the real axis in the complex plane k̃,
and as n goes to infinity with ω̃ and m being fixed, k̃ approaches the vertical line
k̃ = −0.5ω̃(Mh + Md)/(1 − MhMd).

Numerical analysis also confirms that in the high-frequency limit considered here the
effect of mean flow shear on the acoustic part of the spectrum is moderate, provided
regions with strong shear gradients are absent. However, quantitative differences
between the predictions of the values of modal wavenumbers based on the uniform
and the shear flow models may be perceptible. These are shown in figure 2, illustrating
how the modal structure changes as the main flow changes from the uniform profile
M = 0.35 to the linear and parabolic profiles given by

M(r) =
Mh − Md

s − 1
(r − 1) + Md, M(r) = (Md − Mh)

(
r − 1

s − 1
− 1

)2

+ Mh, (3.15)

respectively. Here Mh = 0.5, Mh = 0.2 and s = 0.5. Both profiles have a velocity maxi-
mum at the inner wall. It can be inferred from the figure that topologically all three
patterns of axial wavenumber distributions are similar and feature the same number
of cut-on modes. However, the actual values of the wavenumbers depend on the
mean flow profile. The main differences are the deviation of the first several complex
eigenvalues from the vertical direction and the leftward shift of the whole pattern for
the parabolic profile, which is due to the increase of the average speed of the mean
flow.

3.1.3. Effects of lining

According to the results recently reported by Rienstra (2003b) for the lined circular
duct with uniform mean flow, the problem for a lined duct may be expected to
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Figure 2. Effect of mean flow non-uniformity on the acoustic part of the axial wavenumber
spectrum, ω̃ = 25, m= 15, s = h/d = 0.5. ×, uniform flow (M = 0.35); �, linear profile (Mh = 0.5,
Md = 0.2); ♦, parabolic profile (Mh = 0.5, Md = 0.2).

feature a much richer behaviour. Owing to the complicated character of the dispersion
relation (3.12), a further simplifying assumption that the modes are well cut-off, i.e.

ω̃ ≈ |m| � |k̃| as k̃ → ∞, is needed to make this case analytically treatable.
It should be noted that although from the practical point of view the cut-on and

close to cut-on modes are of the most importance for the propagation problem,
knowledge of a large number of cut-off modes is sometimes needed in industrial
applications. As already mentioned in the Introduction, one such example (which
has triggered the present study) is the problem of spectral approximation of the
perturbation pressure field created in the vicinity of an aero-engine fan in a ducted
flow with shear. The benefit of the proposed asymptotic analysis is that it gives a
rather accurate prediction of the topological structure of the spectrum in the complex

wavenumber plane k̃ for varying wall impedance even for the lowest cut-off mode
numbers (as illustrated in figure 3a below). This is particularly important for lined
walls with finite resistance, in which case the cut-on wavenumbers may move into the
complex plane and become cut-off.

For simplicity let us assume that the inner wall is hard so that σh =0 and ζ =
(1 + σd)/(1 − σd). Equation (3.12) then can be rewritten in the form

2iτd = −2πni + ln

(
zd + z0

zd − z0

)
, where z0 =

(ω̃ − k̃Md)
2

ω̃
√

q(1)
, (3.16)

and n is an integer. Note that for large k̃ the logarithmic term in (3.16) is O(1) when

z0 	= ±zd whereas τd = O(k̃). Hence to leading order, the solution to equation (3.16)
is governed by the dispersion relation obtained above for the hard-wall boundary
conditions τd ≈ −πn, where |n| is large. The logarithmic term influences higher-order
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terms. Expanding z0 and τd in powers of k̃

z0 = −iζ1k̃ + iζ0 + O(k̃−1), τd = iκ1k̃ + iκ0 − iκ−1k̃
−1 + O(k̃−2)

and substituting these formulae in (3.16) gives

k̃ +
κ0

κ1

− κ−1

κ1

k̃−1 + O(k̃−2) =
πni

κ1

− 1

2κ1

ln
zd − i(ζ1k̃ − ζ0 + O(k̃−1))

zd + i(ζ1k̃ − ζ0 + O(k̃−1))
, (3.17)

where

ζ1 =
ω̃−1M2

d√
1 − M2

d

, ζ0 =

(
2 − M2

d

)
Md(

1 − M2
d

)3/2
,

κ1 =

∫ 1

s

√
1 − M2 dr, κ0 =

∫ 1

s

ω̃M dr√
1 − M2

,

κ−1 =
1

2

∫ 1

s

{
ω̃2

1 − M2
− m2

r2
− 2M ′2

M2
+

M ′′ + M ′/r

M
+

1

4r2

}
dr√

1 − M2
.

Consider first the hard-wall limit |zd | 
 ζ1πn/κ1 
 1 with the real and imaginary
parts of the impedance zd being of the same order of magnitude. Since |k̃| ∼ πn/κ1,
the logarithmic term on the right-hand side of (3.17) can be further simplified, and

the following solution for k̃ can be obtained:

k̃ =

{
πni

κ1

− κ0

κ1

− iκ−1

πn
· · ·

}
− 1

zd

(
ζ1πn

κ2
1

+ · · ·
)

. (3.18)

Here the curly brackets contain the expansion of the hard-wall solution in powers of
n. The second term is the leading-order correction due to the lining.

Let R and X be the real and imaginary parts of the specific impedance zd , and k̃r

and k̃i the real and imaginary part of the axial wavenumber k̃. Then elimination of

X from (3.18) yields the following relationship between k̃r and k̃i:(
k̃r +

κ0

κ1

+
ζ1πn

2Rκ2
1

)2

+

(
k̃i − πn

κ1

+
κ−1

πn

)2

=

(
ζ1πn

2Rκ2
1

)2

. (3.19)

Expression (3.19) shows that when the real part R of the impedance zd is fixed and
its complex part X is allowed to vary, the eigenvalues whose index n is not too large
(i.e. |zd | 
 ζ1πn/κ1 
 1) travel along the circle which surrounds the corresponding
hard-wall eigenvalue

k̃0 = k̃0
r + ik̃0

i ,

where

k̃0
r = −κ0

κ1

+ · · · , k̃0
i =

πn

κ1

− κ−1

πn
+ · · · . (3.20)

Its radius decreases with the resistance R and the frequency ω̃ and grows with the
Mach number and with the index n. The centre of the circle is shifted to the left
from the position of the hard-wall eigenvalue k̃0 by an amount equal to its radius
for positive n, and to the right for negative n. The neighbouring circles are shifted
with respect to each other in the vertical direction by π/κ1 + O(1/n2) which depends
mainly on the Mach number distribution and the hub-to-tip ratio s. This result gives
a theoretical explanation for the appearance of circular trajectories in the complex
plane of the axial wavenumber for sufficiently large but fixed resistance R and varying
X which were obtained numerically in Rienstra (2003b) for a lined duct with constant
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Figure 3. Trajectories of the axial wavenumber k̃ for ω̃ = 5, m= 1, M = 0.5. (a) zd = 2 + iX,
(b) zd = 0.5 + iX.

mean flow. This effect is also illustrated in figure 3(a) obtained by means of direct
numerical solution of the Pridmore-Brown equation for a circular duct with ω̃ =5,
m =1, zd =2+iX and the uniform mean flow profile M = 0.5. Owing to the difference
in the sign convention before the term iωt in Rienstra (2003b) and the present study,
the direction of the horizontal shifts of the circles (3.19) is opposite.

It can be inferred from figure 3(a) that the real-valued wavenumbers which are cut-
on in the hard-wall case move off the real axis and become cut-off for an impedance
wall with finite resistance R. Like their strongly cut-off counterparts, these modes
also follow circular trajectories, when the resistance R is large. This is the case with
the two right-hand side cut-on modes shown in figure 3(a).

Consider now a more general situation when |zd | ∼ ζ1πn/κ1 
 1, in which case it
follows from (3.17) that

k̃ = k̃0
r + ik̃0

i − 1

2κ1

ln

(
zd + ζ1πn/κ1 + i(ζ1κ0/κ1 − ζ0)

zd − ζ1πn/κ1 − i(ζ1κ0/κ1 + ζ0)

)
+ O(n−2). (3.21)

Note that expansion (3.18) can be obtained from (3.21) in the limit |zd | 
 ζ1πn/κ1.
For |zd | ∼ ζ1πn/κ1 solution (3.21) breaks down in the vicinities of the points where

zd = −ζ1πn

κ1

− i

(
ζ1κ0

κ1

− ζ0

)
or zd =

ζ1πn

κ1

+ i

(
ζ1κ0

κ1

+ ζ0

)
. (3.22)

If the value of the specific impedance zd is sufficiently close to any of these points,
the logarithmic term on the right-hand side of (3.17) becomes comparable with
the first term πn/κ1and the main-order solution is not governed by the hard-wall
approximation any more. Thus, it must be assumed that zd does not lie in the
immediate vicinity of the points (3.22). The case when the logarithmic term on
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the right-hand side of (3.17) dominates over πn/κ1will be studied in what follows.
However analytical treatment of the situation when these terms are of the same order
of magnitude was difficult and will be tackled numerically elsewhere.

Taking the real and imaginary parts of (3.21) leads to the formulae

k̃r − k̃0
r = − 1

4κ1

ln

{
(R2 + (ζ0 − X)2 − A2 − B2)2 + 4(BR + A(ζ0 − X))2

[(R − A)2 + (B + ζ0 − X)2]2

}
, (3.23)

tan ψ̃ = − 2(BR + A(ζ0 − X))

R2 + (ζ0 − X)2 − A2 − B2
, ψ̃ = 2κ1

(
k̃i − k̃0

i

)
. (3.24)

Here A= ζ1πn/κ1, B = ζ1κ0/κ1. Assume now that |A| ∼ |X| 
 R. Relations (3.23), (3.24)

then can be used to write k̃r in terms of k̃i:

ζ0 − X ≈ A

sin ψ̃
(cos ψ̃ ± 1), k̃r − k̃0

r ≈ 1

κ1

B(ζ0 − X) − RA

(ζ0 − X)2 + A2

and hence

k̃r − k̃0
r =

−R cos(2κ1(k̃i − k̃0
i )) + B sin

(
2κ1

(
k̃i − k̃0

i

))
− R

2Aκ1

if X/A > 0, (3.25)

k̃r − k̃0
r =

−R cos(2κ1(k̃i − k̃0
i )) − B sin

(
2κ1

(
k̃i − k̃0

i

))
+ R

2Aκ1

if X/A < 0. (3.26)

Formulae (3.25), (3.26) show that when resistance R is small and kept fixed while

reactance X varies, the eigenvalue k̃ with a sufficiently large index n must move along
the sinusoidal line. The zeros of this line coincide with the hard-wall eigenvalues

k̃0 = k̃0
r + ik̃0

i . For instance, if for some n> 0 (or n< 0) the corresponding eigenvalue

k̃0(n) is taken as a starting point at X = + ∞ and then X is allowed to gradually
vary until X = −∞, then on moving along the line (3.25) (or (3.26), respectively) the

eigenvalue value k̃ will terminate at the point k̃0(n + 1) (or k̃0(n − 1), respectively)
as illustrated in figure 3(b) which was obtained numerically. This behaviour can be
also noticed directly from formula (3.21). Indeed, as the point zd moves along the line
parallel to the imaginary axis from the position zd = R+i∞ to zd = R − i∞ and passes
singular points (3.22), but does not cross them, the imaginary part of the logarithm

in (3.21) increases by −2π. As a result, the imaginary part of the eigenvalue k̃ has an
overall increment of π/κ1. The amplitude of the sinusoidal lines (3.25), (3.26) decays
as 1/n as n → ∞. Note that the results obtained are exactly in line with the related
numerical findings presented in figure 7 of Rienstra (2003b).

3.1.4. Surface modes

Only small corrections to the hard-wall solutions have been considered so far. The
first such solution was based on the assumption that R 
 ζ1πn/κ1 
 1 and corres-

ponded to the emergence of circular trajectories in the plane k̃. The second solution
was obtained in the limit ζ1πn/κ1 
 R and resulted in sinusoidal eigenvalue contours
(3.25), (3.26). Consider now the case when z0 is close to either of the points ±zd and
the logarithmic term in (3.16) is large. To construct relevant solutions, we assume

that |X| is large, the wall Mach number Md does not vanish and k̃ → ∞. Dispersion
relation (3.16) can then be rewritten in the form

exp[−2κ1(k̃ + κ0 + O(k̃−1))] =
zd − i(ζ1k̃ − ζ0 + O(k̃−1))

zd + i(ζ1k̃ − ζ0 + O(k̃−1))
. (3.27)
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Its leading-order solutions are

k̃ = −izd/ζ1 + · · · if X → −∞ and k̃ = izd/ζ1 + · · · if X → +∞. (3.28)

These solutions are analogous to the high-frequency surface-wave modes studied in
Rienstra (2003b) in the context of a circular duct in a uniform flow. It is interesting to
observe that although they do not have a hard-wall counterpart, the eigenvalues (3.28)
follow from the same dispersion relation as the rest of the acoustic modes. When the
wall Mach number Md =0, although there should be acoustic surface waves, formulae
(3.28) do not apply. This situation should be tackled numerically.

3.2. Turning points

Assume that the function q(r) from (3.5)–(3.7) has a simple zero at a point r = r∗,
s < r∗ < 1. Then, as is known, ordinarily the WKB procedure is not valid near r∗ and
should be modified so as to retain the structure of the function q(r) in the main part
of the operator on the right-hand side of (3.5). This can be accomplished by taking

τ (r) =

{
3

2

∫ r

r∗

√
q(ξ ) dξ

}2/3

.

Then assuming that m ∼ ω̃ ∼ k̃ as k̃ → ∞ and also (3.9), in order to keep the impedance
term in the boundary condition, the problem (3.5)–(3.7) becomes

d2w

dτ 2
+ τw = 0,

dw

dτ
+ iσhw = 0 at τ = τh,

dw

dτ
− iσdw = 0 at τ = τd, (3.29)

where τh = τ (s), τd = τ (1), and σh and σd are given by (3.11). System (3.29) has
solution w(τ ) = AAi(−τ ) + B Bi(−τ ), where Ai and Bi are Airy functions, which is
not identically zero if

I (k̃) =

∣∣∣∣∣Ai′(−τd) + iσd Ai(−τd) Bi′(−τd) + iσd Bi(−τd)

Ai′(−τh) − iσh Ai(−τh) Bi′(−τh) − iσh Bi(−τh)

∣∣∣∣∣ = 0. (3.30)

To main order in k̃ the position of the turning point is given by (ω̃ − k̃M(r∗))
2 −

k̃2 − m2/r2
∗ = 0, or equivalently,

k̃ =
−ω̃M(r∗) ±

√
ω̃2 − (1 − M2(r∗))m2/r2

∗
1 − M(r∗)2

, (3.31)

where k̃ and r∗ are to be found. Since r∗ >s > 0, we assume in what follows that
the non-dimensional frequency ω̃ is large enough for the square root in (3.31) to
be real. This is also the most important situation practically. In this case the axial

wavenumber k̃ and the function q(r) are also real and, hence, either q ′(r∗) > 0 or
q ′(r∗) < 0.

Consider first the inequality q ′(r∗) > 0. Then as k̃ → ∞

τh =

{
−3

2
i

∫ r∗

s

√
|q(ξ )| dξ

}2/3

→ −∞, τd =

{
3

2

∫ 1

r∗

√
q(ξ ) dξ

}2/3

→ +∞

and the dispersion relation (3.30) yields

cos
(
ζd + 1

4
π
)

− iσdτ
−1/2
d sin

(
ζd + 1

4
π
)

+ · · · = 0, (3.32)
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where ζd =
∫ 1

r∗

√
q(ξ ) dξ . Together with (3.31), formula (3.32) defines the positions of

the turning points r∗. The corresponding modal solution has the following asymptotic

structure (as k̃ → ∞):

w =
{
sin

(
ζd + 1

4
π
)

+ iσdτ
−1/2
d cos

(
ζd + 1

4
π
)

+ · · ·
}

Ai(−τ )

+
{
cos

(
ζd + 1

4
π
)

− iσdτ
−1/2
d sin

(
ζd + 1

4
π
)

+ · · ·
}

Bi(−τ ).

If there exists r∗ such that the dispersion relation (3.32) is satisfied, then the coefficient
before the function Bi(−τ ) is identically zero. In this case the eigenfunction w decays
exponentially in the interval s < r < r∗, where q(r) < 0, and oscillates in the interval
r∗ <r < 1, where q(r) > 0. As a result, it is the boundary condition at the outer wall,
where q(r) > 0, that has the major influence on the existence and the character of the
roots r∗ of the dispersion relation, whereas the character of the boundary condition
in the quiet region s < r < r∗, where q(r) < 0, is relatively unimportant.

Substituting σd from (3.11), zd = R + iX, using the identity τ ′τ 1/2 =
√

q(r) and taking
the real and imaginary part of (3.32) we obtain the system

cos
(
ζd + 1

4
π
)

− X

R2 + X2

(ω̃ − k̃Md)
2

ω̃
√

q(1)
sin

(
ζd + 1

4
π
)
= 0,

R

R2 + X2
sin

(
ζd + 1

4
π
)
= 0.

⎫⎪⎪⎬⎪⎪⎭ (3.33)

If zd = ∞, (3.33) reduces to the hard-wall case considered in Cooper & Peake (2005)
(see their formula (103) with ψ = 0)∫ 1

r∗

√
q(r) dr = π

(
n + 1

4

)
, n = 0, 1, 2, 3 . . . . (3.34)

It follows from (3.33) that the problem with the lined outer wall does not admit real
turning points, apart from the very special case of R = 0 when system (3.33) reduces
to √

(ω̃ − k̃Md)2 − k̃2 − m2 =
(ω̃ − k̃Md)

2

ω̃X
tan

(
ζd + 1

4
π
)
. (3.35)

Consider now the inequality q ′(r∗) < 0. Then as k̃ → ∞

τh =

{
3

2

∫ r∗

s

√
q(ξ ) dξ

}2/3

→ +∞, τd =

{
3

2

∫ 1

r∗

√
|q(ξ )| dξ

}2/3

→ −∞

and the dispersion relation (3.30) yields

cos
(
ζh + 1

4
π
)

+ iσhτ
−1/2
h sin

(
ζh + 1

4
π
)

+ · · · = 0, (3.36)

where ζh = −
∫ r∗

s

√
q(ξ ) dξ . The solution w now has the following structure (as k̃ → ∞):

w =
{
sin

(
ζh + 1

4
π
)

− iσhτ
−1/2
h cos

(
ζh + 1

4
π
)

+ · · ·
}

Ai(−τ )

−
{
cos

(
ζh + 1

4
π
)

+ iσhτ
−1/2
h sin

(
ζh + 1

4
π
)

+ · · ·
}

Bi(−τ ).

Again, the solution oscillates in the region, where q(r) > 0 (i.e. s < r < r∗), and
exponentially decays in the region, where q(r) < 0 (i.e. r∗ < r < 1), provided that
the dispersion relation (3.36) holds at the turning point r∗. As a result, now the
boundary condition on the inner wall r = s is of major importance, whereas the outer
wall lies in the quiet zone. The analysis of equation (3.36) is identical to the analysis
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WKB tp Exact Relative error %

k̃tp k̃ |k̃tp − k̃|/|k̃ − k̃d |

−43.36 −43.59 1.38
−38.00 −38.36 2.16
−31.12 −32.08 6.23
−2.210 −1.251 6.22

4.564 5.028 2.14
10.45 10.26 0.72

Table 2. Turning-point analysis versus exact solution.

of (3.32), with the main result being that no turning points are possible if the real
part of the wall impedance zh is non-zero.

Overall we see that if the wall, where the function q(r) has a positive value, is treated
with a lining material with finite resistance the dispersion relation (3.30) cannot be
satisfied for any r∗ lying inside the flow region. As a result, there exist no solutions

with real turning points and cut-on wavenumbers k̃ defined by formula (3.31) in this
case. This is in line with the numerical results presented in figure 3(a), which show
that all cut-on modes are shifted off the real axis when the resistance R is taken to
be non-zero on an appropriately chosen wall.

Contrary to this, the properties of the lining material on the wall, where the function
q(r) is negative, do not have significant effect on the roots of the dispersion relation.
In this case the wall is located inside the quiet region and to leading order the
dispersion relation is unaffected by this wall’s impedance. This is the wall r = s in the
case of the dispersion relation (3.30) and the wall r = 1 in the case of the dispersion
relation (3.31). For example, if q(r = s) < 0 and q(r = 1) > 0, the wall r = s is soft and
the wall r =1 is hard, then to leading order the turning points are given by equation
(3.34) or, equivalently cos(ζd + 1

4
π) = 0. If q(r = s) > 0 and q(r = 1) < 0, the wall r = s

is hard and the wall r = 1 is soft, then the turning points are given by the equation
cos(ζh + 1

4
π) = 0.

As with the ordinary WKB approximation, it is useful to check the accuracy of
the approximate formula (3.34) against the related exact uniform flow solutions with

k̃ real. The results of the comparison are shown in table 2 for the same values
of governing parameters as in table 1: ω̃ = 25, m =15, s = 0.6, M = 0.5, zd = ∞. In

computation of the relative error in table 2 an adjustment for the Doppler shift k̃d

in k̃ equal to −16.67 was made. It can be seen from table 2 that the accuracy is
reasonably good, although it decreases significantly when the turning point is located
very close to the duct wall. This situation is illustrated in the fourth row of the table.
Here the turning point actually lies slightly inside the hub, i.e. rtp = 0.589 < s = 0.6
and the related eigenvalue must be taken from the ordinary WKB analysis. However,
the turning-point prediction was found to be in perceptibly better agreement with the
exact solution.

3.3. Hydrodynamic spectrum

The analysis carried out in the previous sections assumed that ω̃ − k̃M(r) did not
vanish, so that the coefficients of the governing equation remained smooth in r . This
section aims to study the properties of the eigensolutions of system (3.1)–(3.3) when

ω̃ − k̃M(r) = 0 at some point r = r̃ , s � r̃ � 1. In this case the coefficient before the
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first derivative in equation (3.1) goes to infinity and the function q(r) defined by (3.8)
develops a singularity near r̃ . The Pridmore-Brown equation has a regular singular
point at r = r̃ and its two linearly independent solutions in the vicinity of this point
are (see, for example, Korn & Korn 1968)

p1(r) = (r − r̃)3
∞∑

n=0

an(r − r̃)n,

p2(r) = − b0

3a0

((
M ′′(r̃)

M ′(r̃)
− 1

r̃

)(
k̃2 +

m2

r̃2

)
+

2m2

r̃3

)
p1(r) ln(r − r̃) +

∞∑
n=0

bn(r − r̃)n,

where a0 	= 0 and b0 	= 0 are arbitrary numbers and the coefficients an, bn are fixed
functions of a0 and b0, respectively. The details of the procedure used to obtain
solutions of this type are also documented in Lees & Lin (1946). General solution to
equation (3.1) is regular near the critical point r̃ provided the following smoothness
condition is satisfied: (

M ′′(r̃)

M ′(r̃)
− 1

r̃

)(
k̃2 +

m2

r̃2

)
+

2m2

r̃3
= 0.

If otherwise, the general solution is singular and the problem (3.1)–(3.3) may have a
critical layer near the point r̃ with the axial velocity amplitude U (r) = O(ln(r − r̃)) as

r goes to r̃ . If k̃ and m are both assumed large, while the derivatives of the Mach
number remain O(1) at r̃ , further analytical advance is possible. This case is studied
in the next section, and the main result obtained is that in the short-wavelength
limit there cannot exist more than two hydrodynamic modes which are smooth for
s < r < 1. They correspond to the critical point r̃ lying on either of the duct walls.
However, apart from these two modes, there also exists a continuum of hydrodynamic
modes with a singularity lying inside the interval s < r < 1.

3.3.1. Narrow duct

Hydrodynamic modes with the critical point on the duct wall

The ordinary WKB solution constructed in the previous sections becomes invalid at
the point r̃ , although it still gives the correct outer limit of the solution for large

k̃ as r → r̃ . In order to clarify the structure of the inner solution near r̃ , first we
consider a model problem for a narrow duct. The procedure of matching of the outer
WKB solution with the corresponding leading-order inner solution which does not
assume that the duct is narrow is described in the second part of this section. This
procedure can be extended to a more general equation (2.24), in order to include the
effects of the mean-flow swirl. It should be noted, however, that equation (2.24) has a
stronger singularity than equation (3.1) and the results of this section are not directly
applicable to the swirling flow. For simplicity in this section only the case of hard
walls is considered.

Let ∆+ = 1 − r̃ , ∆− = r̃ − s, ∆ =1 − s, where 0 <s � r̃ � 1, and assume that ∆ � 1.
Introduce new independent variable η = (r−r̃)/∆. Note that η = O(1), since −∆−/∆ �
η � ∆+/∆. Then

r−1 = r̃−1 + O(∆), ω̃ − k̃M(r) = −∆k̃(M ′(r̃)η + O(∆)), M(r) = M ′(r̃) + O(∆).

We seek a solution of equation (3.1) in the form of the following expansion in ∆:

P = P0(η) + ∆P1(η) + o(∆).
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To leading order in ∆ equation (3.1) becomes

d2P0

dη2
− 2

η

dP0

dη
− ν2P0 = 0,

dP0

dη

(
η = −∆−

∆

)
=

dP0

dη

(
η =

∆+

∆

)
= 0. (3.37)

Here we assume that ν2 = ∆2(k̃2 + m2/r̃2) = O(1). The first equation of system (3.37)
has general solution

P0 = c+(1 − νη) exp(νη) + c−(1 + νη) exp(−νη), (3.38)

with c−, c+ = constant. Substitution of (3.38) into the boundary conditions leads to
the following system for c− and c+:

dP0

dη

(
η = −∆−

∆

)
= ν2 ∆−

∆

(
c+ exp

(
−ν

∆−

∆

)
+ c− exp

(
ν
∆−

∆

))
= 0,

dP0

dη

(
η =

∆+

∆

)
= −ν2 ∆+

∆

(
c+ exp

(
ν
∆+

∆

)
+ c− exp

(
−ν

∆+

∆

))
= 0.

This system does not permit non-zero solutions for real k̃ unless either ∆+ =0 or
∆− =0. Each of these cases leads to the eigensolution

P0 = (1 + νη) exp(−ν(η − 1)) − (1 − νη) exp(ν(η − 1)), (3.39)

where η =(r − 1)/∆, ν = ∆
√

k̃2 + m2, k̃ = ω̃/Md , Md 	= 0 for r̃ = 1 and η = (r − s)/∆,

ν =∆

√
k̃2 + m2/s2, k̃ = ω̃/Mh, Mh 	= 0 for r̃ = s. Note that in the special case when

Md = Mh, k̃ is the eigenvalue of multiplicity two, as discussed in the Introduction.
It is interesting to observe that the main-order solution (3.39) is free of the

logarithmic singularity obtained in the previous section for the function p2(r). This
is not a discrepancy, however, since this singularity is fully recovered in the next-
order term of the solution. Indeed, the next-order term P1(η) satisfies the following
inhomogeneous boundary-value problem:

d2P1

dη2
− 2

η

dP1

dη
− ν2P1 = −

(
b
dP0

dη
+ cηP0

)
,

dP1

dη

(
−∆−

∆

)
=

dP1

dη

(
∆+

∆

)
=0, (3.40)

where

b =
1

r̃
− M ′′(r̃)

M ′(r̃)
and c =

2m2

r̃3
∆2.

Here both b and c are assumed O(1).
Consider, for definiteness, the case when the critical point lies on the inner wall

η = 0, i.e. r̃ = s. The case when r̃ = 1 can be treated similarly. It can be shown after
some simple but tedious algebra that the solution to equation (3.40) has the following
form:

P1 = C+(η)p+(η) + C−(η)p−(η),

where p+(η) = (νη − 1) exp(ν(η − 1)), p−(η) = (νη + 1) exp(−ν(η − 1)) are two linearly
independent solution of the related homogeneous equation, and

C±(η) = ±c − bν2

2ν3

∫ η

0

[1 − exp(∓2ν(ξ − 1))]ξ−1 dξ − 1

2
b(η − 1) ∓ c

4ν
(η2 − 1)

±
(

5c

8ν3
− b

4ν

)
[exp(∓2ν(η − 1)) − 1] +

c

4ν2
[η exp(∓2ν(η − 1)) − 1].
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Any eigensolution proportional to P0(η)) can, of course, be added to the solution P1.
It is easily seen from the expressions obtained that the most singular term of the
solution P1 as η goes to zero is

P1 =
1

3

((
M ′′(r̃)

M ′(r̃)
− 1

r̃

)(
k̃2 +

m2

r̃2

)
+

2m2

r̃3

)
∆2η3 ln η + · · · .

Hence, we see that although the main-order solution is smooth, the singularity is
recovered in the next-order term. As a result, the asymptotic solution obtained
develops a logarithmic singularity near the critical point r = r̃ which lies on the wall
of the duct in the short-wavenumber limit. It should be noted that here we have
explicitly assumed that k̃ and m are of order ∆−1 or larger. This assumption is
essential, since the expansion of the function P into a power series in ∆ loses its

asymptotic character if ν goes to zero, i.e. k̃ and m � ∆−1. When k̃ and m are not large,
at least in principle, the problem can be expected to possess hydrodynamic eigen-
solutions if the smoothness condition of the previous section holds at the point r̃ .

Singular hydrodynamic modes with the critical point lying strictly inside the duct

Apart from the two smooth eigensolutions described in the previous subsection, the
leading-order problem (3.37) admits a continuous spectrum of solutions which have
continuous derivatives up to the second order inclusive, but have a jump in the third
derivative. These eigensolutions can be constructed as follows.

Consider the following two solutions of the differential equation (3.37):

P −
0 (η) = − ∆

ν∆−
{(1 − νη) exp[ν(η + ∆−/∆)] − (1 + νη) exp[−ν(η + ∆−/∆)]}

and

P +
0 (η) =

∆

ν∆+

{(1 − νη) exp[ν(η − ∆+/∆)] − (1 + νη) exp[−ν(η − ∆+/∆)]}.

It can be easily verified that

dP −
0

dη

(
η = −∆−

∆

)
= 0 and

dP +
0

dη

(
η =

∆+

∆

)
= 0,

so that the function

ψ =

{
P +

0 (0)P −
0 (η) if −∆−/∆ � η < 0,

P −
0 (0)P +

0 (η) if 0 < η � ∆+/∆,

satisfies the boundary conditions of the problem (3.37), has two continuous derivatives
in η and also satisfies the differential equation of the problem (3.37) with the value

of the spectral parameter k̃ = ω̃/M(r̃), where s < r̃ < 1 is an arbitrary position of the
critical point. However, the third derivative of the eigenfunction ψ(η) is discontinuous
at the point η = 0 which corresponds to the critical point r = r̃ in terms of the original
radial coordinate.

We note in passing, that a higher-order analysis similar to the analysis in the previ-
ous section shows the emergence of the logarithmic term in the next-order approxima-
tion of the singular hydrodynamic modes considered here.

Although singular, these eigenmodes are of substantial practical importance. Indeed,
consider the Green’s function G(η, η0) for the system (3.37), i.e. the function G(η, η0)
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which satisfies the problem

d2G

dη2
− 2

η

dG

dη
− ν2G = δ(η − η0),

dG

dη
(η = −∆−/∆) =

dG

dη
(η = ∆+/∆) = 0,

where δ(η) is the Dirac delta function and η0 is the position of the source point,
−∆−/∆ <η0 < ∆+/∆. It is easy to verify by direct calculation that

G(η, η0) =
1

W (η0)

{
P +

0 (η0)P
−
0 (η) if −∆−/∆ � η < η0,

P −
0 (η0)P

+
0 (η) if η0 < η � ∆+/∆.

where

W (η0) = −2∆νη2
0

∆−∆+

(eν − e−ν).

In can be seen from the last expression that the amplitude of the Green’s function goes
to infinity as the position of the source η0 approaches the critical point η = 0. In this
case the expression to the right of the curly brackets in the formula for the Green’s
function is identically equal to the eigenfunction ψ(η). This observation shows that the
impulsive forcing on the right-hand side of the equation for G(η, η0) is in resonance

with the system, due to the existence of the eigensolution ψ(η), k̃ = ω̃/M(r̃). As is
known, this situation can be remedied by consideration of the generalized Green’s
function. The details of this approach can be found for instance in Smirnov (1981).

3.3.2. A note on the general case of the Pridmore-Brown equation

In this section our aim is to briefly outline the way in which the results of the
previous section can be extended to the case of ducts that are not narrow.

For large k̃ and away from the point r = r̃ the WKB solution to the Pridmore-Brown
equation (3.1) which satisfies the hard-wall boundary conditions is

P =
ω̃ − k̃M√

r

cos(τ )

(τ ′)1/2
+ · · · , τ (r) =

∫ r

a

√
q(ξ ) dξ, (3.41)

where a = s > 0 if s � r < r̃ and a = 1 if r̃ < r � 1. If r is kept fixed and such that

r 	= r̃ and k̃ → ∞ the function q(r) previously defined by (3.8) becomes, to leading
order,

q(r) = q0(r), where q0(r) = (ω̃ − k̃M)2 − k̃2 − m2/r2, (3.42)

since for the most singular term in (3.8) the estimate

2k̃2(M ′(r))2

(ω̃ − k̃M(r))2
=

2(M ′(r))2

(M(r̃) − M(r))2
�

const

(r̃ − r)2
� k̃2 (3.43)

holds provided |̃r − r | 
 1/k̃ and M ′(r) is bounded for s � r � 1. In order to obtain
outer asymptotic expansion of the solution near the point r̃ , substitute (3.42) in (3.41)
and take the limit r → r̃±. This gives

P = − k̃M ′(r̃)(r − r̃)

2
√

r̃µi

(
e−I−−µ(r−r̃) + eI−+µ(r−r̃)

)
+ · · · as r → r̃−, (3.44)

P = − k̃M ′(r̃)(r − r̃)

2
√

r̃µi

(
e−I+−µ(r−r̃) + eI++µ(r−r̃)

)
+ · · · as r → r̃+, (3.45)
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where

I− =

∫ r̃

s

√
−q0(r) dr, I+ =

∫ r̃

1

√
−q0(r) dr, µ =

√
k̃2 + m2/r̃2.

Owing to the singularity (3.43), formulae (3.44), (3.45) are invalid in the region where

|̃r −r | ∼ 1/k̃, since in this region the singularity becomes comparable with the leading-

order term −k̃2 − m2/r2 in the expansion of q(r). Prompted by the solution (3.39) of
the model problem, introduce local coordinate ξ = µ(r − r̃) which is centred on the

singular point r̃ and is O(1) in the region where |̃r − r | ∼ 1/k̃. Then, to leading order,
the Pridmore-Brown equation becomes

d2P

dξ 2
− 2

ξ

dP

dξ
− P = 0. (3.46)

It must be supplemented with the conditions of matching with the main-order solution
(3.44), (3.45) obtained in the outer region, i.e.

P (ξ → ±∞) → Aξ
(
e−(I±+ξ ) + e(I±+ξ )

)
+ · · · , A = − k̃M ′(r̃)

2
√

r̃µ3i
. (3.47)

Equation (3.46) has general solution

P = c+(1 − ξ ) exp(ξ ) + c−(1 + ξ ) exp(−ξ ). (3.48)

It can satisfy the restrictions at infinity only provided c+ = −A exp(I+), c− = A exp(I−)
and I+ − I− = 2πin, where n is an integer. The latter restriction can be rewritten as∫ 1

s

√
k̃2 + m2/r2 − (ω̃ − k̃M)2 dr = 2πin, (3.49)

where ω̃/ max(M(r)) � k̃ � ω̃/ min(M(r)) for s < r < 1. Substitution of ω̃ = k̃M(r̃) into
equation (3.49) gives∫ 1

s

√
1 − (M(r̃) − M(r))2k̃2 + m2/r2 dr = 2πin. (3.50)

which is impossible for a subsonic mean flow. Thus, the only possibility is that r̃ = s

or r̃ = 1. In the first case (3.47) gives way to the following boundary conditions:

P (ξ → +∞) → Aξ
(
e−(I++ξ ) + e(I++ξ )

)
+ · · · , dP

dξ
(0) = 0

so that c+ = −A exp(I+), c− =A exp(−I+), k̃ = ω̃/Mh in the solution (3.48). In the
second case the appropriate boundary conditions are

P (ξ → −∞) → Aξ
(
e−(I−+ξ ) + e(I−+ξ )

)
+ · · · , dP

dξ
(0) = 0,

and c+ = −A exp(I−), c− = A exp(−I−), k̃ = ω̃/Md , respectively.
Overall, the results of this section show that if the structure of the boundary-layer

flow in the immediate vicinity of the duct walls is discarded and the tangential
component of the mean flow velocity is assumed non-zero on the walls, then for
sufficiently large k̃ there exist two hydrodynamic modes of the Pridmore-Brown
equation, with the critical points being exactly on the walls and their phase velocities
equal to the mean flow velocity at the walls. This may not be true, however, if the
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mean flow velocity has a typical boundary-layer flow profile that satisfies no-slip
conditions on the walls.

It is useful to compare the results of this section to the multiple-scale analysis
of Golubev & Atassi (1998) obtained for mean flow with solid-body swirl. They
demonstrate the existence of a critical layer centred on the purely convective axial
wavenumber, where the accumulation of nearly convective eigenvalues takes place
for non-zero swirl. Remarkably, if the swirl is set to zero in their dispersion relation
(43), the nearly convected modes disappear and the only remaining eigenvalue is
the purely convective mode, which is also the case here. Note that clustering of
nearly convective modes was reported in Golubev & Atassi (1998) for a differential
equation which does not reduce to the Pridmore-Brown equation studied in this
section.

4. Conclusions
The propagation of small-amplitude axisymmetric unsteady disturbances in an

annular lined duct with mean axial shear flow has been re-examined analytically on the
basis of the WKB method. Our emphasis has been on the asymptotic analysis of
the high-frequency and short-wavelength modes. This is appropriate in the light of
the engineering applications outlined in the Introduction. We have found by means
of comparisons with the known exact solution and numerical computations (Vilenski
& Rienstra 2006) that the approximation we have derived provides an accurate tool
attractive for practical purposes, especially in view of the stiffness of the numerical
problem.

The major underlying issue for the proposed study has been whether the mean flow
shear and the wall lining significantly influence the properties of the spectrum of the
Pridmore-Brown equation.

It follows that the net effect of the mean flow shear on the acoustic part of the
spectrum is moderate, and the results found for flows with shear are qualitatively
similar to the uniform flow case, provided regions with strong shear gradients are
absent. Quantitative differences in the values of modal wavenumbers do arise though.
These are illustrated in figure 2 and also in Vilenski & Rienstra (2006), where the
evolution of the acoustic modal structure as the main flow changes from the uniform
to various parabolic profiles is presented. These differences were found not to be
critical from the theoretical standpoint, and for this reason are not discussed here
any further.

In contrast, the effect of lining on the acoustic part of the spectrum is of considerable
significance. We find that finite resistance on the wall, where the function q(r) from
(3.8) is positive, prevents the emergence of the turning points in the flow. As a result,
the existence of the related cut-on modes becomes impossible in this case. This is in
line with numerical observations (for instance, see figure 3 and also Rienstra 2003b)
which illustrate the shift of the otherwise cut-on modes off the real axis of the complex
plane k̃, when finite resistance is applied to the suitably chosen wall. Note, though,
that the acoustic lining of the opposite wall which lies in the quiet region of the
related problem with the hard walls does not have the described effect.

Our analysis also explains the emergence of sinusoidal and circular trajectories in
the complex wavenumber plane. Modal wavenumbers follow these trajectories when
the reactive part of the wall impedance varies from minus to plus infinity. Circular
trajectories (3.19) are typical for the cut-off modes whose mode number n is relatively
low, so that the restriction R 
 ζ1πn/κ1 is satisfied. The sinusoidal eigenvalue contours
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(3.25), (3.26) occur when the opposite inequality holds, i.e. for strongly cut-off modes.
In both cases explicit prediction of wavenumbers as functions of the frequency, Mach
number, wall impedance and tip-to-hub ratio proves to be possible.

In line with the previous numerical findings for the uniform flow case, the problem
with a non-uniform mean flow has two surface modes (3.28). Our study shows that
their phase speed is proportional to the wall impedance and decreases as the wall
Mach number increases.

It is known that mean flow non-uniformity results in the appearance of the
hydrodynamic part of the spectrum. The results obtained show that for mean flow
profiles with non-zero wall Mach numbers the number of smooth hydrodynamic
eigenmodes is finite and they are localized near the duct walls, provided a smoothness
condition similar to the classical condition of the Rayleigh inflection-point theorem
holds. Unlike its two-dimensional counterpart (Lees & Lin 1946), for axisymmetric
flows this condition contains explicit dependence on the streamwise and azimuthal
wavenumbers. If the smoothness condition is not satisfied for a given mean flow
profile and given wavenumbers, the axial velocity develops a logarithmic singularity
at the critical radius, where k̃ = ω̃/M(r̃).

However, apart from these modes (whose critical radius coincides with one of the
walls), there is a continuum of singular hydrodynamic modes which have a third
derivative with a jump at the critical point. These solutions play an important role in
construction of the Green’s function.

For boundary-layer mean-flow profiles which satisfy the no-slip condition the
situation is more complex. Our preliminary computation suggests the existence of a
continuous, unbounded hydrodynamic spectrum which arises from the singularity at
the critical point (Drazin & Reid 2004). Further analysis of this result is needed.
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